"To Treat or Not To Treat GHD in Adults" is the question

Nahid Hashemi Madani.MD

Institute of Endocrinology and Metabolism

Iran University of Medical Sciences

Agenda

- Clinical features of GHD in adults
- Evaluate the evidence for the benefits of rhGH replacement
- Challenges with rhGH therapy in adults with GHD
- Overview of current recommendations regarding the management of GHD in adults

Patient: 38-year-old woman (BMI: 22kg/m²)

History:

NFPAs/ Trans-Sphenoidal Surgery and Radiotherapy 2 years ago On stable replacement for cortisol, thyroid, and sex hormones

Symptoms:

Profound fatigue, "can't lose weight," depressed mood AGHDA score: 18/25

Labs:

IGF-1: 65 ng/mL (low for age-sex)
Failed Glucagon Stimulation Test (Peak GH: 0.4 ng/mL)

Patient: 48-year-old obese male (BMI 34 kg/m²)

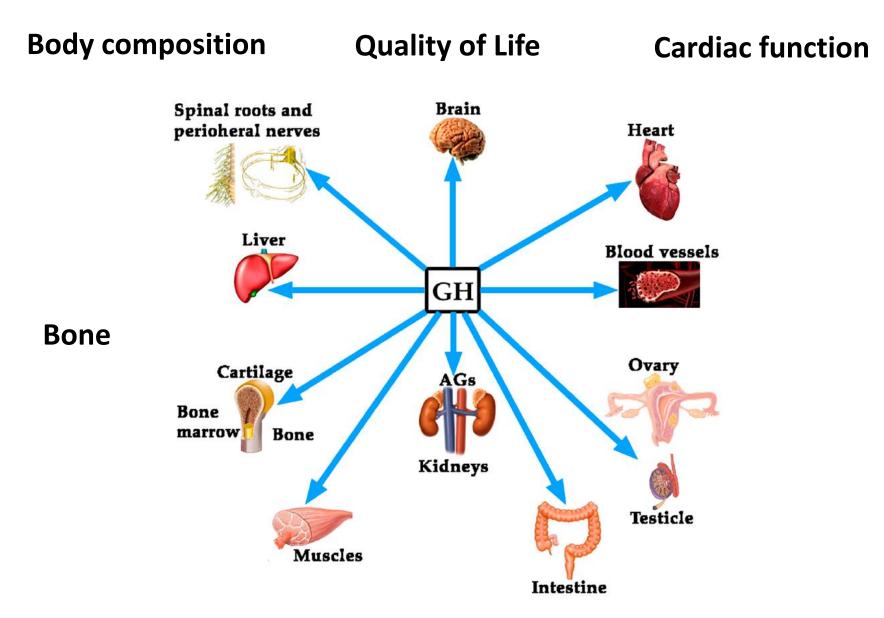
History:

Resistant prolactinoma who underwent TSS
He is on hormone replacement therapy with prednisolone and testosterone.

Symptoms:

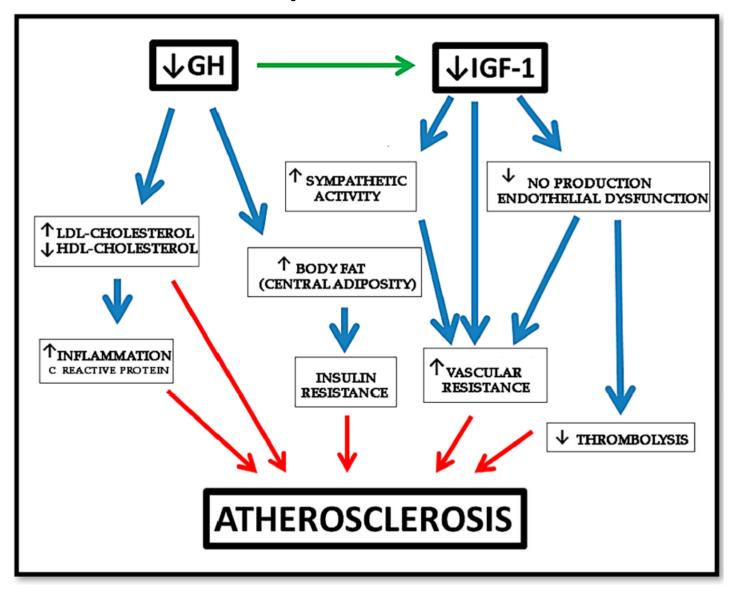
Fatigue, poor exercise tolerance

AGHDA score: 10/25


Labs:

IGF-1: 80 ng/mL (low for age-sex)

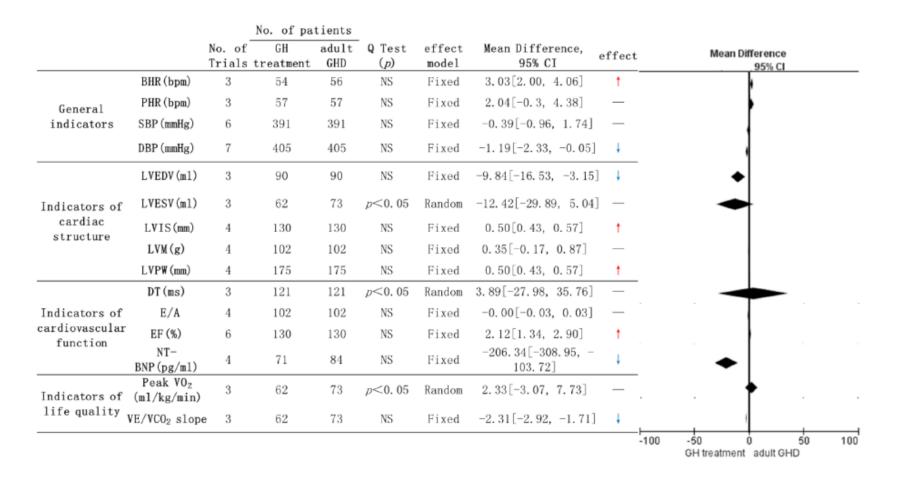
Glucagon Stimulation Test: Peak GH 1.1 ng/mL (equivocal)


Testosterone :0.6 ng/ml

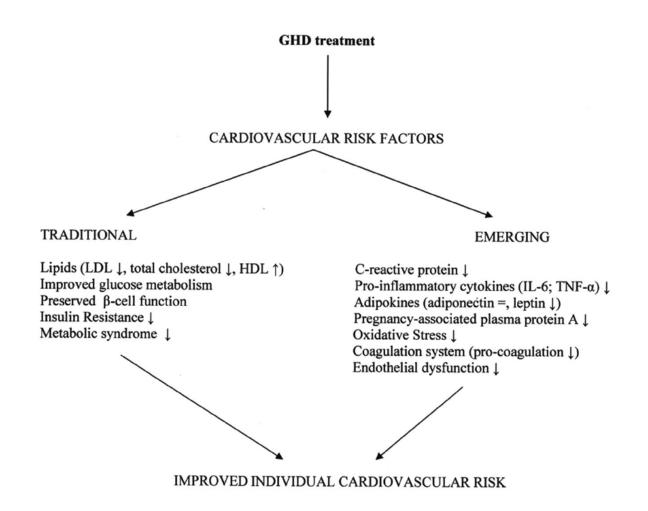
GHD is Not just a lab value, but a syndrome with multi-systemic consequences.

Int. J. Mol. Sci. 2018, 19, 290

Effects of GH deficiency on Cardiovascular and metabolism

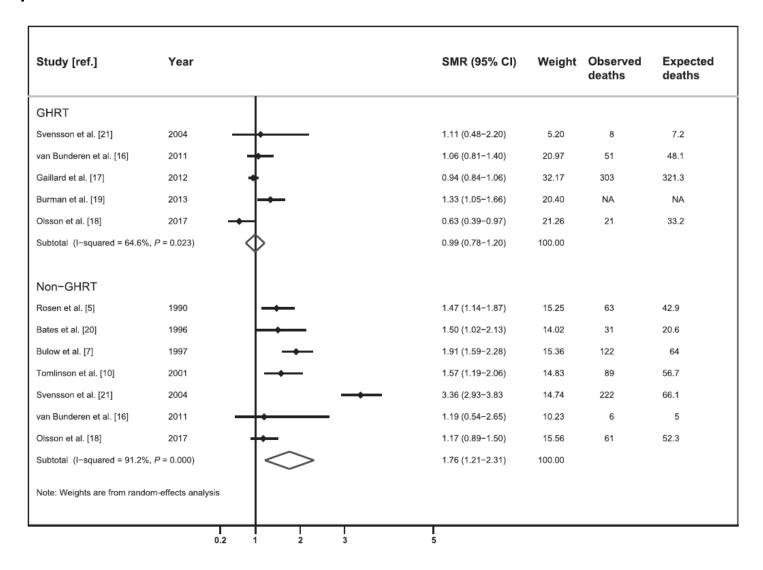

Change in **body composition** and **lipids** from baseline among GH-treated and placebo patients

Meta-analysis of 22 RCT Duration of F/U: 6mo

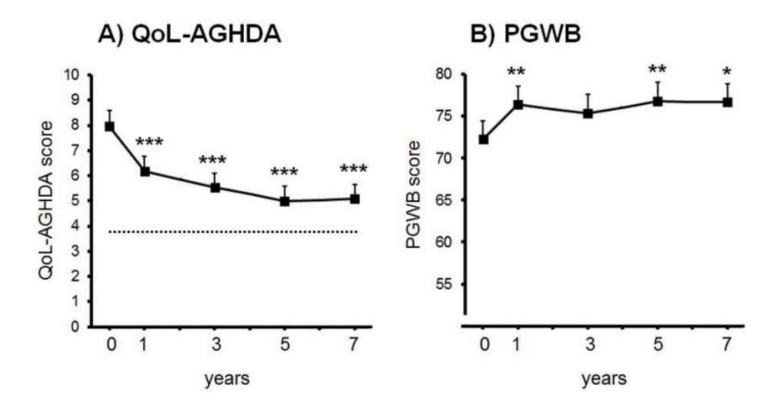

Parameter	GH-treated	Placebo			
	Weighted mean \pm SD (n*)	Weighted mean ± SD (n*)	P value**		
Body weight (kg)	-0.49 ± 7.02 (9)	0.38 ± 6.58 (9)	0.1		
Body mass index (kg/m ²)	-0.18 ± 2.86 (7)	0.09 ± 2.09 (6)	0.2		
Lean body mass (kg)	$2.61 \pm 6.79 (18)$	$0.04 \pm 4.53 (14)$	< 0.0001		
Fat mass (kg)	-2.19 ± 13.52 (14)	$0.31 \pm 6.80 (11)$	0.0002		
VO ₂ Max (L/min)	0.93 ± 6.48 (7)	$0.24 \pm 1.40 (7)$	0.2		
Total Cholesterol (mmol/L) ^a	-0.38 ± 1.14 (14)	$0.01 \pm 0.88 (13)$	< 0.0001		
LDL Cholesterol (mmol/L) ^a	$-0.42 \pm 1.80 (11)$	$-0.10 \pm 1.62 (10)$	0.0009		
HDL Cholesterol (mmol/L)	$0.14 \pm 0.56 (10)$	$0.05 \pm 0.79 (9)$	0.09		
Triglycerides (mmol/L) ^a	$0.02 \pm 0.80 (13)$	-0.02 ± 2.12 (12)	0.7		
IGF-1 (nmol/L)	21.23 ± 36.98 (18)	$0.36 \pm 5.71 (14)$	< 0.0001		

Meta-analysis of 11 studies on **cardiovascular effect** of GH replacement in adults with GHD

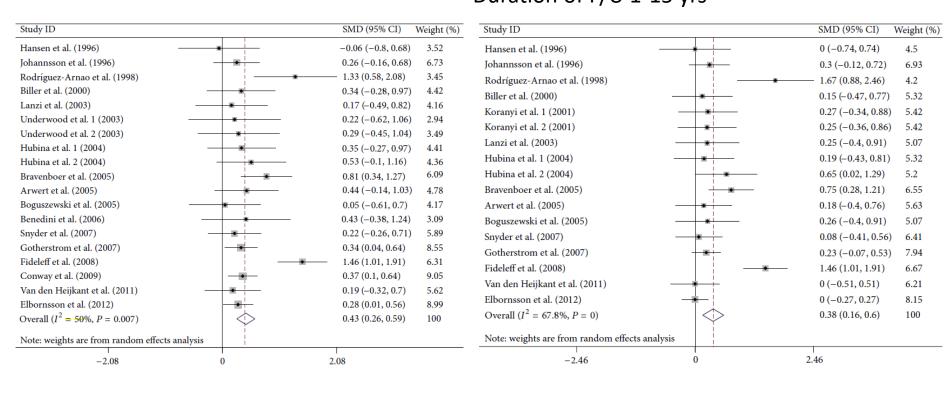
Duration of follow-up:6-12 mo



The potential impact of GH replacement on the individual cardiovascular risk


J Clin Endocrinol Metab 99: 18-29, 2014

Meta-analysis of studies investigating **mortality** in patients with hypopituitarism with and without GHRT


Quality of life (QoL) in hypopituitary patients with adult onset GHD during 7 years of GH replacement

N=95

Eur. J. Endocrinol. 2017, 176, 99-109

Forest plot for the association between GH treatment and BMD of spine and femoral neck 20 studies, 936 participants Duration of F/U 1-15 yrs

Relative risk for **neoplasm outcomes** in GH-treated vs untreated patients: using HypoCCS database

Mean follow-up:4.8 yrs

Outcome measure	GH-treated n/N (%)	Untreated <i>n</i> / <i>N</i> (%)	Total <i>n</i> / <i>N</i> (%)	P value χ^{2a}	<i>P</i> value CMH ^b	Relative risk (95% CI) ^c
Primary malignancy ^d Pituitary adenoma recurrence ^d	217/8410 (2.6) 257/3537 (7.3)	44/1265 (3.5) 56/720 (7.8)	261/9675 (2.7) 313/4257 (7.4)	0.07 0.63	0.98 0.53	1.00 (0.70–1.41) 0.91 (0.68–1.22)
Craniopharyngioma recurrence	64/956 (6.7)	5/102 (4.9)	69/1058 (6.5)	0.49	0.55	1.32 (0.53–3.31)

Patient data	Benefits	Risks
Body composition	Reduction in fat mass Increase in lean mass	Increase in BMI Increased waist circumference
Cardiovascular risk markers	Increase in HDL-chol Reduction of total and LDL-chol Diastolic blood pressure reduction Reduction of CRP Reduction of carotid intima-media thickness	Reduced insulin sensitivity Increase in fasting glucose and insulin Trend to the increase in the prevalence of metabolic syndrome Increase in lipoprotein (a)
Mortality	Tendency to decrease the global mortality of hypopituitarism	Persistence of higher mortality than the general population in some studies
Health-related quality of life	Improvement in quality of life questionnaires Greater benefit in patients with low quality of life at baseline	No improvement in all dimensions Probable absence of effect in patients with normal quality of life
Bone metabolism	Increase in bone mineral density	Effect on the incidence of fractures not clearly shown
Neoplasms	No increase in the rate of recurrence or progression of hypothalamic-pituitary tumors No increase in overall risk of neoplasia in adults with GHD	Tendency to increase risk of second malignancy in childhood cancer survivors treated with GH in childhood

Challenges with rhGH therapy in adults with GHD Overview of current recommendations

The Diagnostic Challenge:

Whom to Test:

- Patients with known pituitary disease
- History of traumatic brain injury, subarachnoid hemorrhage (12 months following the events)
- Childhood GHD requiring retesting

Initial Work-up: Low age-sex-matched IGF-1

Dynamic Stimulation Tests:

- Insulin Tolerance Test (ITT) gold standard but risky
- Glucagon Stimulation Test (GST)

In whom Dynamic Stimulation Tests are not necessary:

Patients with organic hypothalamic-pituitary disease (e.g., suprasellar mass with previous surgery and cranial irradiation) who have MPHD (≥3
 PHD) and low sex-age matched IGF-1

Patients with genetic defects affecting the hypothalamic-pituitary axes

Considerations before GH-stimulation tests:

GH-stimulation tests should only be performed after all other Pituitary hormone deficiency have been optimally replaced with stable hormone replacement dose.

In patients with isolated GHD: 2 tests recommended

- ITT remains the gold-standard test to establish the diagnosis of adult GHD using a peak GH cut-point of 5 μg/L (ng/ml)
- This test is increasingly used less frequently because of safety concerns,
 potential to cause severe hypoglycemia

- Contraindicated in certain patients, such as elderly patients and those with seizure disorders and cardio/cerebrovascular disease.
- **GST** could be considered as the alternative test

- For the GST, we recommend utilizing BMI-appropriate GH cut-points to
 diagnose adult GHD to reduce the possibility of misclassifying GH-sufficient
 patients because increased BMI is associated with decreased glucagon-induced
 GH stimulatory effect.
- normal-weight (BMI <25 kg/m²) and overweight (BMI 25 to 30 kg/m²) patients with a high pretest probability:

GH cut-point of 3 μg/L

obese (BMI >30 kg/m²) and overweight (BMI 25 to 30 kg/m²) patients with a low pretest probability:

GH cut-point of 1 μg/L

 In patients with glucose intolerance, the diagnostic accuracy of the GST remains unclear

GHD Clinical Practice Guidelines, Endocr Pract. 2019;25(No. 11)

Initiation and titration of rhGH: Start Low Go Slow

Low rhGH dosages (0.1 to 0.2 mg/day) in GH-deficient patients with concurrent:

- DM, previous gestational DM
- obesity
- older age

Higher rhGH starting doses (0.3 to 0.4 mg/day) in:

- young adults <30 years of age
- women on oral estrogen therapy

- Initially, follow patients at 1- to 2-month intervals
- Increase the rhGH dose in increments of 0.1 to 0.2 mg/day based on:
 clinical response

serum IGF-1 levels (within the age-sex adjusted reference range) **side effects:**

Arthralgias, Myalgias, edema, carpal tunnel syndrome, insulin resistance increase in ICP

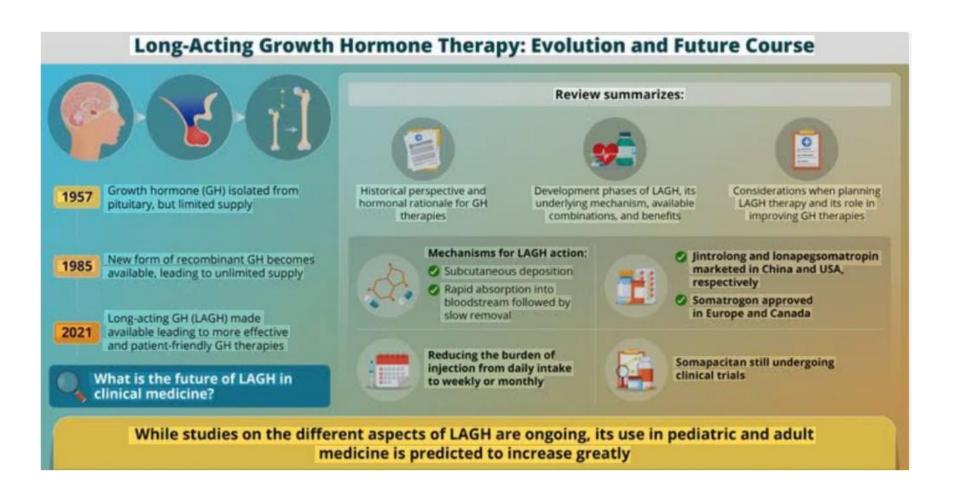
- Once **maintenance doses** are achieved, follow-up can be implemented at approximately **6- to 12-month intervals**.
- Shorter follow-up time intervals and smaller dose increments can be implemented especially for the elderly, and those with other comorbidities, such as DM

The following **parameters** may be assessed at approximately 6- to 12-month intervals:

- serum IGF-1
- fasting glucose, hemoglobin A1c, fasting lipids
- BMI, waist circumference, waist-to-hip ratio
- serum-free T4
- HPA axis via early morning cortisol or cosyntropin stimulation test
- baseline MRI in patients with any post-surgical tumor remnant in the
 hypothalamic-pituitary region before initiating rhGH, and periodic MRIs
 during rhGH therapy

The optimal duration of rhGH replacement therapy remains unclear.

If patients on rhGH replacement experience **beneficial effects** on QoL and objective improvements in biochemistry, body composition, and bone mineral density, rhGH treatment can be continued **indefinitely**


rhGH is contraindicated in patients with a history of:

- active malignancy (other than basal-cell or squamous-cell skin cancers)
- active proliferative or severe non-proliferative diabetic retinopathy

Treatment with rhGH should be conducted with caution in patients with a strong

family history of cancer

weekly long-acting GH (LAGH) preparations are currently under development

Patient: 38-year-old woman (BMI: 22kg/m²)

History:

NFPAs/ Trans-Sphenoidal Surgery and Radiotherapy 2 years ago On stable replacement for cortisol, thyroid, and sex hormones

Symptoms:

Profound fatigue, "can't lose weight," depressed mood AGHDA score: 18/25

Labs:

IGF-1: 65 ng/mL (low for age-sex).
Failed Glucagon Stim Test (Peak GH: 0.4 ng/mL)

Decision and Outcome:

Started on low-dose GH
At 1 year, reports "life-changing" improvement in energy, lost 4% body fat
AGHDA score now 6

Patient: 48-year-old obese male (BMI 34 kg/m²)

History:

Resistant prolactinoma who underwent TSS
He is on hormone replacement therapy with prednisolone and testosterone.

Symptoms:

Fatigue, poor exercise tolerance.

AGHDA score: 10/25.

Labs:

IGF-1: 80 ng/mL (low-normal for age-sex)

Glucagon Stim Test: Peak GH 1.1 ng/mL (equivocal)

Testosterone :0.6 ng/ml

Decision and Outcome:

After extensive discussion, decision was made NOT to treat.

Focus shifted to lifestyle intervention (diet, exercise) for weight loss and adequate testosterone replacement.

Energy improved with 10% weight loss.

Take home message

A **low IGF-1** is a red flag, but it's **not diagnostic**.

The stimulation tests are **crucial**, but they are **not perfect**.

We must consider the clinical context **pre-test probability** to avoid misdiagnosis.

The Case FOR Treatment:

Robust and Consistent Data Shows Improvement in:

Body Composition: \uparrow Lean mass, \downarrow Fat mass.

Bone Health: 个 BMD over 1-2 years.

Lipid Profile: ↓ LDL cholesterol.

Quality of Life: Significant improvements in validated questionnaires

The Cancer Question:

No conclusive evidence for increased *de novo* cancer risk, but caution in those with a history of malignancy.

The Burden:

Cost: Extremely high. One of the most expensive chronic therapies.

Administration: Daily subcutaneous injections.

Monitoring: Requires frequent follow-up and dose titration.

To Treat or Not To Treat GHD in Adults?

There is no one-size-fits-all answer.

We should balance significant potential

benefits against significant costs and

risks.

